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Abstract 

This study is concerned with certain aspects of the theory of stabil- 

ity of continuous, one-dimensional, nonconservative elastic systems. In 

particular, it is pointed out that several types of such systems may be 

described analytically by the same non-self-adjoint boundary value problem 

involving a complex differential equation of motion. The imaginary part 

of the complex force parameter is o f  interest because it may be associated 

with a destabilizing effect, the loss of stability being due primarily to 

the real part of the complex force. The physical origin of the imaginary 

part may be-associated with velocity-dependent forces (such as viscous 

damping, Coriolis acceleration and other gyroscopic forces), and certain 

other forces which need not be velocity-dependent, e.g., a torque which 

remains in the plane of deformation of a cantilevered bar. 

Several general theorems applicable to the class of systems selected 

for study are established and an example serves to illustrate various 

features of this class. 
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In troduc t ion 

An important group of problems in the field of applied mechanics 

deals with the stability analysis of elastic systems subjected to non- 

conservative forces. In this group, nonconservative forces are defined as 

being nondissipative and not derivable from a potential. Tangential (or 

"follower") forces are examples of loads that are nonconservative; such 

forces have also been teimed circulatory by Ziegler [1,2] . 
by now that a direct procedure for stability analysis of such systems con- 

sists of obtaining the variational equations of Poincarg by assuming 

infinitesimal deviations from the undiszurbed equilibrium position, and in 

studying then the subsequent motion [3]. The forces which act on the sys- 

tem may or may not depend on time explicitly. In the following, however, 

they are taken to be independent of time (autonomous system). 

they will be functions of deformations and time rate of change of dis- 

placements of the system. 

assumed, attention is focused on determining the property of the fre- 

quency u). 

* 
It is known 

Of course 

imt Therefore, when a dependence e in time is 

Small, free, undamped oscillations of spatially one-dimensional con- 

servative systems are governed by self-adjoint partial differential equa- 

tions of motion, so that the frequencies UI j = 1 , 2 ,  ..., a, are all real. 
When nonconservative forces of the type just mentioned are present, how- 

ever, the governing equation of motion is non-self-adjoint so that the 

solutions for u) may be complex. Thus, the location of w in the complex 

j2 

1 j 

* 
Numbers in brackets designate References at end of paper. 
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iw-plane w i l l  determine s t a b i l i t y  of such systems. 

t h e  b a s i s  of t h e  a n a l y s i s  presented  i n  t h e  sequel .  

This  c r i t e r i o n  forms 

That group of problems i n  which t h e  f o r c e s  (or  moments) are i d e a l i z e d  

t o  be of t h e  fol lower type i s ,  mathematically,  r e l a t i v e l y  simple. It i s  

recognized, however, t h a t  i n  many problems t h e  a n a l y s i s  w i l l  have t o  

inc lude  terms o r i g i n a t i n g  from C o r i o l i s  a c c e l e r a t i o n  o r  from o t h e r  gyro- 

scopic  e f f e c t s .  Such terms may be recognized as be ing  veloci ty-dependent  

f o r c e s ,  and i n  t h e  equat ions  desc r ib ing  small o s c i l l a t i o n s  f o r  s t a b i l i t y  

a n a l y s i s  they  occur as mixed t i m e  and space d e r i v a t i v e s  ( the  o rde r  of t h e  

‘former is  gene ra l ly  odd). As a consequence, t h e  r e s u l t i n g  ord inary  d i f -  

f e r e n t i a l  equat ion  ( i n  s p a t i a l  coord ina te)  w i l l  have terms whose c o e f f i c i -  

e n t s  are imaginary. For in s t ance ,  t h e  governing equat ions  f o r  a c a n t i -  

l evered  elastic p i p e  conveying f l u i d  possess  such a f e a t u r e ,  and t h i s  

problem was considered i n  [ 4 ] .  

The s t a b i l i t y  a n a l y s i s  of e las t ic  systems moving r e l a t i v e l y  t o  a sur- 

rounding f l u i d  is another  i n s t ance  when one has  t o  dea l  w i th  d i f f e r e n t i a l  

equat ions  t h a t  have terms wi th  complex c o e f f i c i e n t s .  I n  t h i s  case t h e  ex- 

p re s s ions  f o r  t h e  fo rces  exerted by t h e  f l u i d  on t h e  e las t ic  system are 

n o t  completely s p e c i f i e d  - a prior.1;  r a t h e r ,  they  are determined i n  t h e  

cour se  of s o l v i n g  t h e  problem. 

t h e  f l u t t e r  a n a l y s i s  of hydro fo i l s ,  a i r p l a n e  wings,  and e las t ic  panels  

Examples belonging t o  t h i s  class inc lude  

[3,5-9]. 

Fur the r ,  it is o f t e n  necess.ary t o  cons ider  i n t e r n a l  damping i n  t h e  

material. One way t o  account f o r  such damping is t o  s e l e c t  some s u i t a b l e  

form of  a l i n e a r  v i s c o e l a s t i c  s t r e s s - s t r a i n  r e l a t i o n s h i p  (a common form of 
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which may consist of a certain combination of linear springs and dashpots 

such that the relation is obtained in the form of linear differential 

operators that act on stress and strain [lo]. The terns in the equation 

of motion that arise due to the strain energy of the elastic system, 

therefore, change so that they have complex coefficients when dependence 

on time is assumed t o  be of the form e , as discussed earlier. Such 

considerations, which give rise to several interesting phenomena, were 

introduced in the studies referred in [ 4 , 9 ]  by using viscoelastic mater- 

ial, a cornon form of which is given by the Kel*Jin model. 

Finally, there are certain position-dependent (but velocity-indepen- 

dent) forces (e.g., a torque which remains in the plane of deformation of 

a cantilevered bar as in Nikolai's problem [ll]) which also give rise to 

complex terms in the differential equation of motion, in a manner similar 

to velocity-dependent forces, as discussed before. 

iw t 

It is, therefore, desirable to study in a general way some of the 

properties of the stability of elastic systems subjected to such "complex" 

forces. The term "cornplp_x" is used here for want of a better designation 

of the class of forces in question, and it is stressed again that their 

physical origin can be quite diverse. 

cription can be made idor,cical, they obviously must possess some common 

properties. In particular, as will be shown in the sequel, a sufficiently 

small imaginary part of the complex force FarameLez is assozisted vi+!? si 

destabilizing effect, the loss of stability being due primarily to the 

real part of the complex force. 

ing on the stability of a linear, discrete, nonconservative system was 

Yet, since their vathemacical des- 

The destabilizing effect of viscous damp- 
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f i r s t  d i scover  d by Ziegl  r [1,2], and la ter  s e v e r a l  au thors  [3,4,9,12-15] 

explored t h i s  i n t e r e s t i n g  phenomenon i n  more d e t a i l .  I n  t h e  p re sen t  s tudy  

s e v e r a l  genera l  theorems concerning t h e  d e s t a b i l i z i n g  e f f e c t s  a s s o c i a t e d  

w i t h  s m a l l  imaginary p a r t  of complex f o r c e  are e s t a b l i s h e d ,  and by way of 

a n  example a more genera l  form of  Nikola i ' s  problem i s  d iscussed  i n  t h e  

pe r spec t ive  of t h e s e  r e s u l t s .  

Some General P rope r t i e s  of  "Complex" Forces  

Consider t h e  fol lowing form of an o rd ina ry  l i n e a r  d i f f e r e n t i a l  equa- 

t i o n :  

(1) P(u) + (iv)Q(u) = waf(x)u ; i = ( -1)  5 

where v i s  a p o s i t i v e  parameter which denotes  t h e  o rde r  of magnitude, u is 

a complex func t ion  of a real v a r i a b l e  x, w i s  t h e  c i r c u l a r  frequency of 

s m a l l  o s c i l l a t i o n ,  and f ( x )  i s  a known continuous func t ion  of x; and 

A t  t h e  end p o i n t s  of t h e  i n t e r v a l  a 5 x c b i n  which (1) i s  v a l i d ,  t h e  N 

boundary cond i t ions  are 

L-(u) = 0 9 a t  x = a ;  n = 0,1, . . . , r  
11 

Ln(u) = 0 Y a t  x = b ;  n = r+l ,r+2,,..,N-l 

where t h e  express ions  L (u)  are of t h e  form n 
N-1 - 

j = 0,l ,... ,N-1 
n=O 

(4) 
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are real quantities characterizing certain properties (such as 
"jn 

and ' jn 
stiffness or inertia) at the two end points. 

It will be assumed that the coefficients f(x), rwn(x), and Bn(x), are 

continuous, single-valued, real functions of x throughout the interval 

a s x s by and 6y does not vanish at any point of the interval. N 

some of cy,, Bn, 7 

tions of F, which denotes the magnitude of loading and is a real positive 

Also, 

and 0 will be assumed single-valued continuous func- 
jn jn 

parameter. 

n = 1,2,...,N, which will be continuous functions of the coefficients 

(a + ivBn) and w. 

indicated merely by parameters cy and B respectively. As mentioned n n' 
above, stands for the imaginary part of the complex forces. Then, the 

most general solution u can be written in a functional form as 

Eq. (1) has at most N linearly independent solutions U (x); n 

The dependence of Un(x) on an(x) and Bn(x) will be n 

'n 

where A are N arbitrary complex constants. 

Substituting the solution given by Eq. (5) into the expressions for 
m 

boundary conditions ( 3 ) ,  a set of N linear, homogeneous, algebraic equa- 

tions in A is obtained, the coefficients of which are functions of m 

(an + ive,), w, and (v 
and only if the determinant, denoted by h, of the coefficients of Am is 
zero, which is expressed in a functional form as follows: 

+ iv8. ). A nontrivial solution of Am exists if 
jn Jn 

n = 1 ,2,,.,,N 

It is noted that the operator (P + ivQ), with the boundary conditions 
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( 3 ) ,  does not have a singularity for v = 0 and has continuous dependence 

on v. Hence, by setting v = 0 in the function A ,  another function denoted 

by A(arn,w,Tjk) is obtained which corresponds to the case when the imagin- 

ary parts of complex forces vanish. 

nonconservative systems in the absence of imaginary parts of complex 

forces lies in studying the roots of A .  This will be explained briP-fly 

below. 

- 

The heart of stability analysis of 

The parameter F represents terms in the operator P and boundary con- 

ditions (3) which are caused by external loadings. When F is identically 

zero, the problem reduces to finding the natural frequencies of the elas- 

tic system. For this case the operator P ,  with respect to boundary con- 

ditions that relate to free oscillation, becomes self-adjoint, such that 

the eigenfrequencies w - j = 1,2,...,03, corresponding to the zeros of 
j’ 

Abn,w,njk)(p=o = 0 ; j ,k = 0,l , . . . ,N-1 

n = 1 ,2,...,N 
(7) 

are all real. It will be assumed that they are distinct and that they 

remain nonzero in order to eliminate divergence. If F is sufficiently 

small, these roots w of A = 0 are still nonzero and real. As F is in- 
j 

creased, at least two of w approach each other and at a certain value of 

F they coalesce. This is, obviously, a very stringent requirement on the 
1 

character of the external loadings and is mathematically known to exist 

for several problems in this fieid L 3 j .  I r ’  P is increased beyend this  

value, at least two of the roots of the above equation are nonzero, com- 

plex conjugates of each other. 

the amplitudes of oscillations increase exponentially (flutter). 

Hence an unstable state exists in which 

The 



minimum va lue  of F, say Fe, f o r  which only one pa i r  of real  U) s a t i s f i e s  

s imultaneously t h e  fol lowing equat ions,  w i l l  correspond t o  f l u t t e r :  

8 

We r e t u r n  now t o  t h e  case  of nonzero v.  A t  t h i s  po in t  it i s  important 

t o  i n v e s t i g a t e  t h e  dependence of e and 8 on w. It may be pointed out  

t h a t  i n  case  of velocity-dependent forces  these  terms are as soc ia t ed  w i t h  

odd t i m e  d e r i v a t i v e s  so t h a t  B (-w) = -Bn(w) and 8 

o t h e r  hand, t h e  fol lowing theorem i s  proved below: 

n j k  

(-0) = - 8 .  (W). On t h e  
n j k  Jk 

Theorem I. I f  each Bn and 8 is a symmetric func t ion  of w (or  inde- 
j k  

pendent of w )  such t h a t  Bn(-w) = Bn(w) and 8 (-w) = 8 (w), then  

the  system is uns t ab le  f o r  any nonvanishing magnitude of t h e  load 

j k  j k  

parameter F. 

Proof .  L e t  w = CY + ivg  and expand from ( 6 )  i n  powers of v t o  o b t a i n  

N N-1 N-1 N-I N-1 
a2 A 

'mn' j k 
n=l m=O n=O j = O  k=O 

N-1 N-1 N N-1 N-1 

+ o ( v 3 ) + .  . . . = o  (9) 

I f  w e  r e t a i n  o rde r s  of v up t o  O(v), t hen  t h e  proof of t h e  s t a t e d  theorem 
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fol lows immediately. I n  f a c t  it i s  meaningful on ly  t o  show t h a t  t h e  system 

i s  uns t ab le  f o r  vanish ing  F. Therefore ,  neg lec t ing  O(v2) and h ighe r ,  t h e  

fol lowing i s  obtained:  

N N-1 N-1 

Sepa ra t ing  t h e  real and imaginary p a r t s  and equat ing  them t o  zero,  t h e  f o l -  

lowing r e s u l t s :  

and 

N N-1 N-1 

s o  t h a t  

N N-1 N-1 

bo! 

It has been remarked before  t h a t  A r ep resen t s  t h e  frequency equat ion  of 

t h e  systems (1) and ( 3 )  f o r  t h e  s p e c i a l  case  of v = 0. Under such a circum- 

s t a n c e ,  then ,  t he  systems (1) and (3 )  w i l l  g ive  r ise t o  t h e  same s o l u t i o n  

A(W,CY,,T. ) = A(-w,@ ,T. ) w i t h  respect t o  e 

W occur s ,  it i s  a s soc ia t ed  wi th  i n e r t i a  fo rces ,  s o  t h a t  t h e  d e r i v a t i v e s  wi th  

-iwt because every t i m e  o r  e i w t  
Jk  n Jk 

.-r3c-e.r.t Aruycu- tc t i m e  t_ arc even, 

w e l l  as t h e  denominator a A / h  i n  Eq. ( l l b ) ,  are symmetric func t ions  of W ;  

Therefore ,  t he  c o e f f i c i e n t s  of 8, and Q i k ,  as 
J -- -1 

and i f  t h e  requirement of  t he  s t a t e d  theorem i s  f u l f i l l e d ,  then  fJ obtained 

from ( l l b )  i s  s i g n  i n v a r i a n t  ( l e t  B be p o s i t i v e )  w i th  r e spec t  t o  fw. A s  a 



10 

* 

r e s u l t  t h e  s o l u t i o n  f o r  frequency w takes  t h e  fol lowing form: 

fw = -+(a + ivB) (12) 

where a i s  t h e  s o l u t i o n  of ( l l a )  and f3 is  obtained from ( l l b )  a f t e r  s u b s t i -  

t u t i o n  of cy. Rela t ion  (12)  i s ,  obviously,  t r u e  f o r  any 0 < F s Fe. Conse- 

f i w t  wil l  quent ly ,  i t  is not  d i f f i c u l t  t o  r e a l i z e  t h a t  one of t h e  s o l u t i o n s  e 

correspond t o  o s c i l l a t o r y  motion with exponent ia l ly  inc reas ing  amplitude 

( f l u t t e r )  f o r  any nonvanishing magnitude of F. 

N i k o l a i ' s  problem i s  an  example of a phys ica l  system t h a t  i l l u s t r a t e s  

This  concludes t h e  proof .  

t h e  above theorem. 

requirement of t h e  s ta tement  i n  Theorem I, t h e r e  may be a case  when not  a l l  

of Bn and 9 Then the  c r i t i c a l  va lue  of F w i l l  

be determined by i n v e s t i g a t i n g  t h e  s ign  of g given by ( l l b ) ,  t oge the r  w i t h  

t h e  r o o t s  of ( l l a ) ;  and i n  genera l  t he re  w i l l  be a d e f i n i t e  nonzero value of 

c r i t i ca l  F. I f  i n  N iko la i ' s  problem viscous  damping f o r c e s  are included,  

then  a l l  t h e  f e a t u r e s  mentioned before  are exhib i ted .  This  i l l u m i n a t i n g  

case w i l l  be  d iscussed  by way of an example a t  t h e  end of t h e  p re sen t  s tudy.  

It may, however, be mentioned t h a t  i n  c o n t r a s t  t o  t h e  

are symmetric func t ions  w. 
j k  

What has  been presented  above is a s u f f i c i e n t  cond i t ion  on t h e  charac-  

ter of t h e  imaginary p a r t s  of complex f o r c e s  such t h a t  they  are s e l f - e x c i t -  

i ng ,  i .e. ,  they have i n  a c e r t a i n  sense t h e  proper ty  of  nega t ive  damping. 

I n  t h e  fo l lowing ,  however, i t  w i l l  be assumed t h a t  no B i s  a sym- 

metric func t ion  i n  t h e  sense mentioned. Therefore ,  when F vanishes  i t  w i l l  

o r  8 
n j k  

be assumed tha t  ail tile pos i t ive  r o o t s  i i j  

h a l f  o f  t h e  imaginary a x i s  i n  t h e  complex iw-plane. 

least one of t h e s e  r o o t s  w 

va lue  of F Eq. (6)  y i e l d s  one real r o o t ,  say w . 

of E?. (6) are  IZ?CE+_P~ in the l e f t  
j 

As F is increased  a t  

approaches the  imaginary a x i s  and f o r  a c e r t a i n  
j 

I f  F i s  increased  beyond 
C 
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this critical value, one of the roots of ( 6 )  becomes complex with negative 

imaginary part and, therefore, the amplitude of oscillation increases expon- 

entially with time (flutter). Consequently, the minimum value of F, say Fd, 

which admits a nonzero p ~ s i t i ~ e  real root w 3€ ( 6 ) ,  corresponds to flutter. 

With these preliminaries the following theorems can be established: 
C 

Theorem 11. Let w be a sufficiently snall number, such that terms of  

O(wa) and higher car. be neglected in comparison with those of 

O(v) , then 

Fd 5 F 

Let w = a! + ivg and ob ta in  LS beZ~-,-e  the following (neglecting 

e 

Proof. 

O(v2) and higher): 

A(a!,@,,Tjjk) = 0 (13a) 

aa 
It shoxld be noted that ?.x- E = 0 ,  B is a positive quanti%y, so that when 

According to wkat has been h s ' , i ~ ~ ~ m  befcr? ,  nanelp, thac A and aA/acu do not 

vanish simultaneously f o r  P i F ZT ~0110~s ttat "a /a@ does not change sign 

in this range of P, such that  Q is a posisiv.vz q z a x i t y  that satisfies (13a). 

e j  

s~anisber. Hence, Fd = F < F will cause e 
n=l j=O k=O 

flutter only if the followirig equations are satisfied simultaneously: 
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Now, assume that for F s Fe, the expression (13b) does not vanish. 

But, for F > F at least two roots of Eq. (13a) are conjugate complex of 

each other, say CY' f ip', and the denominator of the expression (13b), 

namely, ablba,  changes sign, so that 6 ,  for this value of Cy' & ib', is a 

negative quantity. 

is obtained: 

e 

Therefore, when F > Fe, the following expression for u) 

u) 1, a =Cy' f ip' f ivp (14) 

where p is a negative quantity and is given by 

. 

N N-1 N-1 

1 k'n+ 1 1 e jk 
n=l i-0 k=O 

Thus Fd = F > F 

tially with time (flutter). 

is associated with an amplitude which increases exponen- 
e 

In the above it has been shown that when the inequality F > F is e 

satisfied, the system loses stability by flutter. The case of equality, 

= F = Fe, was not discussed. At this value of F = Fey b 4 / b ~ t  Fd namely, 

vanishes for the double root of (13a). However, if (13c) is satisfied at 

the same time, the criterion that the boundary of stability is determined by 

a real root of ( 6 )  is fulfilled. The condition of equality is met only in 

this case. Therefore, 

N N-I N-1 

Corollary. If the term [ 1 e B n +  j=O 1 k=O 1 e 'jk] is 
nu1 
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. 
1 

propor t iona l  t o  bA/acu, t h e  d e s t a b i l i z i n g  e f f e c t  of s u f f i c i e n t l y  

small complex f o r c e s  i s  e l iminated.  

Note t h a t  i f  (13c) does no t  vanish toge the r  w i t h  bA/bcu, B becomes inde- 

te rmina te  and the  method of r e t a i n i n g  o rde r s  only up t o  O(v) seems t o  be in- 

adequate.  Higher order  terms must then be r e t a ined  i n  t h e  ana lys i s .  

Now,  r e t a i n i n g  o rde r s  up t o  O(v2) i n  t h e  expansion (9),  t he  fol lowing 

theorem is proved: 

Theorem 111. Let v be f i n i t e  such t h a t  O(v3) and h igher  can be neg- 

l e c t e d  i n  comparison wi th  O(va) and lower. Then 

Fd F e 

i f  t h e  fol lowing r e l a t i o n  holds :  

N N  N-1 N-1 N-1 N-1 a2 a 
emne j k 

m=l n-1 m=O n-0 j = O  k=O 

N N-1 N-1 
a2 A = -  a2A 

+ 1 1 aanbTjk 'nejk a$ 
n=l j = O  k=O 

- Proof.  Neglect ing O(v3) and higher  i n  ( 9 ) ,  and equat ing  real and 

imaginary p a r t s ,  sepa ' ra te ly ,  t o  zero,  t h e  fol lowing is obtained:  

N N-1 N-1 

pnejk ] 0 
aa A 

+ 2 C C C aanaqjk 
n=l j = O  k=O 
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and 
8 

N N-1 N-1 

ah - a@ 

Replacing t h e  term i n  b racke t s  i n  Eq. (16) by ( b 2 b / b 8 ) p 2 ,  as assumed above, 

t h e  fo l lowing  r e s u l t s :  

Using (13b), t h e  above equat ion reduces t o  

Therefore ,  

which is  i d e n t i c a l  t o  Eq. (13a). Thus, by v i r t u e  of t h e  r e l a t i o n  assumed i n  

Theorem 111, f o r  f i n i t e  V ,  Eqs. (13b) and (16) r ep resen t  exac t ly  t h e  con- 

d i t i o n s  d iscussed  i n  Theorem 11, and hence the  proof fol lows as before .  

An important ques t ion  i n  t h i s  context  arises: which of t h e  two types of 

p a t h s  shown i n  Fig.  1 i s  followed by t h e  s o l u t i o n  of Eq. ( 6 ) ?  Path A 

denotes  s t a b i l i t y ,  whereas B i s  d e s t a b i l i z i n g  w i t h  an  inc rease  i n  V.  

f i n i t e  v ,  so  t h a t  o rde r s  up t o  0(v2) are cons idered ,  Eqs. (13c) and (16) can 

be so lved  s imultaneously t o  g ive  a r e l a t i o n  of t h e  type F = F(V). Then, t he  

answer i s  given by s tudying  t h e  s ign  of d2F/dva. 

s i g n i f i e s  t r a n s i t i o n  f r o m  pa th  A t o  B,  o r  v i c e  ve r sa .  Resu l t s  similar t o  B 

have been obta ined  i n  ana lyz ing  the  bending- tors iona l  f l u t t e r  of a s w e p t  

wing r epor t ed  i n  [SI. 

For 

Obviously, Theorem 111 

It has been found t h a t  an inc rease  i n  t h e  magnitude 



of the parameter associated with damping in shear results in a decrease of 

the flutter parameter denoting speed. 

Example -- Stability of a Cantilevered Bar Subjected 

to a Partially Following Twisting Moment 

Consider small motion of a uniform cantilevered bar, shown in Fig. 2 ,  

whose moment of inertia I is the same about any axis. 

relation of the material is expressed as 

The stress-strain 

where E is the modulus of elasticity and 7 is the coefficient of viscosity. 

Using complex deflection w = u -t iv, where u and v are displacements along x 

and y axes (Fig. 2 ) ,  respectively, the equation of motion of the bar sub- 

jected t o  a twisting moment which remains in the plane of deformation and 

partially follows the slope of the end during motion, is given by 

a2w = 0 asw a3w +TI-- iL- E1 - 
at2 

a4w 
a 24 az*at as +m-- 

with the following boundary conditions: 

where L is the twisting moment which always lies in the plane of deformation 

and rotates by an angle which is H times the angle of rotation of the free- 

end section, m is the mass of the bar per unit length, and R is the length 
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of t h e  bar.* 

may be added t o  Eq. (17). 

e ters ,  

To cons ider  t h e  e f f e c t  of e x t e r n a l  damping, a term k(bw/bt) 

Introducing t h e  fol lowing dimensionless  param- 

" 
I 

Eqs .  (17) and (18) take  t h e  forms 

aw aZW + y ' - + - = o  a4w asw a3w - +  6 '  - - i M 1  - as4 as4a7 as3 a T 2  

To i n v e s t i g a t e  s t a b i l i t y  as a f f e c t e d  by s m a l l '  f o r c e  parameters ,  t h e  

fo l lowing  n o t a t i o n  i s  introduced: 

6 '  = v6 , M' = vM , and Y '  = v Y  , 

i n  which v denotes  the  o rde r  of magnitude (as d iscussed  before) ,  and 6 ,  F 

and Y are of the  o rde r  of un i ty .  The s o l u t i o n  of  Eq. (20) is  taken i n  t h e  

; t h e  s t a b i l i t y  of the bar  w i l l  be determined by t h e  behavior 
f i w T  

form Jr ({)e 

of w. The n a t u r e  of w w i l l  depend upon t h e  n o n t r i v i a l  s o l u t i o n s  of t h e  

~ - 

* 
The r e s u l t  f o r  t h e  s p e c i a l  case of u = 0, namely, t h a t  t h e  e l a s t i c  

c a n t i l e v e r e d  bar  i s  uns t ab le  f o r  any nonvanishing magnitude of t h e  t w i s t i n g  

moment, w a s  presented by TrEsch [17]. See a l s o  Ref. [3]. 



I 
following equation in 9( ( 5 ) :  

4 

together with the following boundary conditions: 

at s = l  da tb dJI f ivw6 - - ivM(1 - H) - = 0 , d2 - 
dS2 d12 d5 

Eq. (22) is a fourth order ordinary, linear, homogeneous, differential 

equation with constant complex coefficients. Therefore, instead of writing 

a general solution for $ in terms of the coefficients of different terms in 

( 2 2 ) ,  it may also be written as 

L - r J  
j =1 

are arbitrary constants and 3; where A 

characteristic equation: 

are the roots of the following 
j j 

Substitution of ( 2 4 )  into (23)  results in the following system of linear 

homogeneous equations in A 
j '  

4 1 A j = O  
j =l 

4 1 I j A j  = 0 
j =1 

(26a j 



4 - 1 ((1 f ivw6)xa - ivM(1 - vb)y } ehJ A = 0 
j =I 

j j j 

For a nontrivial solution, the determinant of the coefficients of A .  in 
3 

(26) should be zero, which is represented as 

f iwfj),ivM(I - H)) = C (27) 

In order to expand (27) in a pover series of v, the coefficients of 

which are obtainable from the frequency equation of free oscillation ex- 

pressed as A(1.) = 0, let 
J - x = A. + iva. + o(v2) 

j J  J 

which results in 

> j = 1 ,2,...,4 J J a t -  

j 4 hy 

% A = * (w)’ ; h = f i(w) 
3, 4 

- 
The determinant A ,  when expanded in powers of v, is expressed as 

(29) 

( 3 0 )  
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a 

I A f t e r  s i m p l i f i c a t i o n  of (31) and neglec t ing  O(v2) and h ighe r ,  t h e  fol lowing 
~ ( I  

express ion  i s  obtained: 

I 
1 (1 + Ch Jw cos J w )  + ( i v )  { [I + Ch Jw cos Jw + - (Sh Jw cos  Jw Jw 

+ Ch Jw s i n  J w ) ]  i (6 + 3) [6(1 + Ch Jw cos  J w )  

+ Jw(Sh Jw cos Jw - Ch J w  s i n  J w ) ]  } = 0 (33) 

It is  remarkable t h a t  Eq. (33)  is independent of H. I n  o t h e r  words, 

t h e  so-ca l led  "degree of nonconservativeness" ).t has no e f f e c t  on t h i s  sys- 

, 
I t em.  I n  p a r t i c u l a r ,  f o r  H = 0 ( t h e  tw i s t ing  moment i s  always p a r a l l e l  t o  

t h e  undeformed a x i s  of t h e  ba r )  and f o r  H. = 1 ( the  t w i s t i n g  moment i s  

always normal t o  t h e  end c ross - sec t ion ) ,  t h e  governing s t a b i l i t y  equat ion is  

t h e  same. 

To f i n d  t h e  roo t s  of Eq. ( 3 3 ) ,  l e t  Jw = CY + ivf3, and o b t a i n  fram (33) ,  

a f t e r  neg lec t ing  O(v2) and h ighe r  orders  , t he  following: 

1 + Cha,  cos  CY = 0 

and 

3 @ = & - ( 6 + $ ) - - [  CY3 
M Sh CY cos CY + Ch CY s i n  CY 

, 4  2cu Sh CY cos CY - Ch CY s i n  (Y 

(34) 

(35) 

The r o o t s  of (34) are, of course,  t h e  roo t s  t h a t  correspond t o  t h e  

n a t u r a l  f requencies  of an e l a s t i c  can t i l eve red  bar .  Corresponding t o  any of 

t h e s e  r o o t s ,  t h e  term i n  bracke ts  on t h e  right-hand s i d e  of Eq. (35) i s  a 

n e g a t i v e  quan t i ty .  Thus, f o r  t h e  case of an e l a s t i c  bar  wi thout  e x t e r n a l  

damping (6-= Y = 0 ) ,  B i s  a p o s i t i v e  quan t i ty  and, t h e r e f o r e ,  t h e  s o l u t i o n  

e w i l l  denote  exponent ia l ly  increas ing  motion i n  t i m e .  Hence, f o r  t h i s  - icuT 

case t h e  bar  i s  uns t ab le  f o r  any .nonvanishing magnitude of t h e  t w i s t i n g  

moment. 



0 

~ 

a 
If the inequality, - cy4 (6 + 5) - M [ Sh a cos CY + Ch CY sin 

Sh d! cos CY - Ch CY sin CY 2 

holds, then the system is stable, Therefore, the critical moment is ob- 

tained by setting 

Ct4 Sh cy cos a + Ch cy sin a] = 
- 2 (' + 3) - [Sh cy cos cy - Ch cy sin cy 

which yields 

M e -  (6e4 + y)(Sh CY cos CY - Ch CY sin CY) 
2(Sh a cos cy + Ch CY sin @) 

For the smallest root of ( 3 4 ) ,  CY = 1,875, the above gives 

M = 11.546 + 0 . 9 2 5 Y .  

Thus it is seen that the critical moment depends linearly on both the in- 

ternal and external damping. 
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Fig. 1. Stability cumen indicating dependence on v 



Fig. 2. Cantilevered bar subjected tn N part ia l ly  
follower couplc: geometry and layout 


